65 research outputs found

    Negative thermal expansion in single-component systems with isotropic interactions

    Full text link
    We have devised an isotropic interaction potential that gives rise to negative thermal expansion (NTE) behavior in equilibrium many-particle systems in both two and three dimensions over a wide temperature and pressure range (including zero pressure). An optimization procedure is used in order to find a potential that yields a strong NTE effect. A key feature of the potential that gives rise to this behavior is the softened interior of its basin of attraction. Although such anomalous behavior is well known in material systems with directional interactions (e.g., zirconium tungstate), to our knowledge this is the first time that NTE behavior has been established to occur in single-component many-particle systems for isotropic interactions. Using constant-pressure Monte Carlo simulations, we show that as the temperature is increased, the system exhibits negative, zero and then positive thermal expansion before melting (for both two- and three-dimensional systems). The behavior is explicitly compared to that of a Lennard-Jones system, which exhibits typical expansion upon heating for all temperatures and pressures.Comment: 21 pages, 13 figure

    Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport

    Full text link
    We show that it is possible to have a topological phase in two-dimensional quasicrystals without any magnetic field applied, but instead introducing an artificial gauge field via dynamic modulation. This topological quasicrystal exhibits scatter-free unidirectional edge states that are extended along the system's perimeter, contrary to the states of an ordinary quasicrystal system, which are characterized by power-law decay. We find that the spectrum of this Floquet topological quasicrystal exhibits a rich fractal (self-similar) structure of topological "minigaps," manifesting an entirely new phenomenon: fractal topological systems. These topological minigaps form only when the system size is sufficiently large because their gapless edge states penetrate deep into the bulk. Hence, the topological structure emerges as a function of the system size, contrary to periodic systems where the topological phase can be completely characterized by the unit cell. We demonstrate the existence of this topological phase both by using a topological index (Bott index) and by studying the unidirectional transport of the gapless edge states and its robustness in the presence of defects. Our specific model is a Penrose lattice of helical optical waveguides - a photonic Floquet quasicrystal; however, we expect this new topological quasicrystal phase to be universal.Comment: 12 pages, 8 figure

    Topological crystalline protection in a photonic system

    Full text link
    Topological crystalline insulators are a class of materials with a bulk energy gap and edge or surface modes, which are protected by crystalline symmetry, at their boundaries. They have been realized in electronic systems: in particular, in SnTe. In this work, we propose a mechanism to realize photonic boundary states topologically protected by crystalline symmetry. We map this one-dimensional system to a two-dimensional lattice model with opposite magnetic fields, as well as opposite Chern numbers in its even and odd mirror parity subspaces, thus corresponding to a topological mirror insulator. Furthermore, we test how sensitive and robust edge modes depend on their mirror parity by performing time dependent evolution simulation of edge modes in a photonic setting with realistic experimental parameters.Comment: 10 pages, 7 figure

    Period-doubled Floquet Solitons

    Full text link
    We propose and experimentally demonstrate a family of Floquet solitons in the bulk of a photonic topological insulator that have double the period of the drive. Our experimental system consists of a periodically-modulated honeycomb lattice of optical waveguides fabricated by femtosecond laser writing. We employ a Kerr nonlinearity in which self-focusing gives rise to spatial lattice solitons. Our photonic system constitutes a powerful platform where the interplay of time-periodic driving, topology and nonlinearity can be probed in a highly tunable way.Comment: 5 pages, 3 figures, Supplementary Informatio
    • …
    corecore